Sprawdzian Kompetencji Matematyka Klasa 5 2017
Sprawdzian Kompetencji Matematyka Klasa 5 2017 to standaryzowany test z matematyki, przeprowadzany w szkołach podstawowych w Polsce, aby ocenić poziom wiedzy i umiejętności matematycznych uczniów kończących piątą klasę. Jego celem jest diagnoza opanowania materiału z zakresu arytmetyki, geometrii oraz rozwiązywania zadań tekstowych, zgodnie z obowiązującą podstawą programową. Wyniki sprawdzianu nie wpływają bezpośrednio na promocję do kolejnej klasy, ale służą szkołom i nauczycielom do identyfikacji obszarów, w których uczniowie potrzebują dodatkowego wsparcia.
Zastosowanie sprawdzianu:
- Ocena postępów ucznia: Pozwala zidentyfikować mocne i słabe strony ucznia w zakresie wiedzy matematycznej.
- Diagnoza potrzeb: Pomaga nauczycielom dostosować metody nauczania do indywidualnych potrzeb uczniów.
- Ocena efektywności nauczania: Dostarcza informacji o skuteczności programów nauczania i metod pracy w danej szkole.
Rozwiązywanie typowych zadań – krok po kroku
Poniżej przedstawiamy typowe zadania, które mogą pojawić się na sprawdzianie, wraz z instrukcjami krok po kroku, jak je rozwiązywać.
Zadanie 1: Działania na liczbach naturalnych
Opis: Zadania polegają na wykonywaniu obliczeń pisemnych (dodawanie, odejmowanie, mnożenie, dzielenie) na liczbach naturalnych, często z uwzględnieniem kolejności wykonywania działań.
Przykład: Oblicz: 25 + 13 x (36 – 18) : 2
Rozwiązanie:
- Krok 1: Wykonaj działanie w nawiasie: 36 – 18 = 18
- Krok 2: Wykonaj mnożenie: 13 x 18 = 234
- Krok 3: Wykonaj dzielenie: 234 : 2 = 117
- Krok 4: Wykonaj dodawanie: 25 + 117 = 142
Odpowiedź: 142
Zadanie 2: Ułamki zwykłe i dziesiętne
Opis: Zadania wymagają znajomości ułamków zwykłych i dziesiętnych, umiejętności ich porównywania, skracania, rozszerzania oraz wykonywania na nich działań.
Przykład: Oblicz: 1/4 + 0,5 x 2/5
Rozwiązanie:
- Krok 1: Zamień ułamek zwykły na dziesiętny lub odwrotnie. Najprościej zamienić 1/4 na 0,25.
- Krok 2: Wykonaj mnożenie: 0,5 x 2/5 = 0,5 x 0,4 = 0,2
- Krok 3: Wykonaj dodawanie: 0,25 + 0,2 = 0,45
Odpowiedź: 0,45 (lub 9/20)
Zadanie 3: Geometria – obliczanie obwodów i pól figur
Opis: Zadania dotyczą obliczania obwodów i pól podstawowych figur geometrycznych: kwadratu, prostokąta, trójkąta, równoległoboku i rombu. Wymagają znajomości odpowiednich wzorów.
Przykład: Oblicz pole prostokąta o bokach długości 8 cm i 5 cm.
Rozwiązanie:
- Krok 1: Przypomnij sobie wzór na pole prostokąta: P = a x b, gdzie a i b to długości boków.
- Krok 2: Podstaw wartości do wzoru: P = 8 cm x 5 cm
- Krok 3: Wykonaj obliczenia: P = 40 cm2
Odpowiedź: Pole prostokąta wynosi 40 cm2.
Zadanie 4: Zadania tekstowe
Opis: Zadania wymagają umiejętności czytania ze zrozumieniem, analizy treści, wyodrębnienia istotnych informacji oraz ułożenia odpowiedniego działania lub równania, aby rozwiązać problem.
Przykład: Ania kupiła 3 bułki po 1,20 zł każda i 2 rogaliki po 0,80 zł każdy. Ile zapłaciła Ania za zakupy?
Rozwiązanie:
- Krok 1: Oblicz koszt bułek: 3 x 1,20 zł = 3,60 zł
- Krok 2: Oblicz koszt rogalików: 2 x 0,80 zł = 1,60 zł
- Krok 3: Oblicz łączny koszt zakupów: 3,60 zł + 1,60 zł = 5,20 zł
Odpowiedź: Ania zapłaciła 5,20 zł.
Zadanie 5: Porównywanie liczb i jednostek
Opis: Zadania wymagają umiejętności porównywania liczb naturalnych, ułamków oraz jednostek długości, masy, czasu i objętości.
Przykład: Która z wartości jest największa: 1,5 kg, 1400 g, czy 0,002 tony?
Rozwiązanie:
- Krok 1: Zamień wszystkie wartości na tę samą jednostkę, np. gramy.
- Krok 2: 1,5 kg = 1500 g
- Krok 3: 0,002 tony = 0,002 x 1000 kg = 2 kg = 2000 g
- Krok 4: Porównaj wartości: 1400 g, 1500 g, 2000 g
Odpowiedź: Największa wartość to 0,002 tony (2000 g).
Wskazówki dodatkowe:
- Czytaj uważnie treść zadania: Zwróć uwagę na wszystkie szczegóły i pytania.
- Zapisuj obliczenia: Pozwoli to uniknąć błędów i łatwiej sprawdzić rozwiązanie.
- Sprawdzaj wyniki: Upewnij się, że odpowiedź jest logiczna i sensowna w kontekście zadania.
- Ćwicz regularnie: Rozwiązuj różne typy zadań, aby utrwalić wiedzę i umiejętności.
- Zapamiętaj wzory: Znajomość wzorów na pola i obwody figur geometrycznych jest kluczowa.
Pamiętaj, że systematyczna praca i regularne powtarzanie materiału to klucz do sukcesu na sprawdzianie! Powodzenia!
