histats.com

Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym


Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym

W ruchu jednostajnym prostoliniowym ciało porusza się po linii prostej ze stałą prędkością. Oznacza to, że wartość prędkości i jej kierunek nie ulegają zmianie w czasie. Obliczenie drogi w takim ruchu jest stosunkowo proste, ponieważ wykorzystujemy do tego jeden podstawowy wzór.

Podstawowy wzór na drogę (s) w ruchu jednostajnym prostoliniowym wygląda następująco:

s = v * t

Gdzie:

  • s – droga (mierzona np. w metrach – m, kilometrach – km)
  • v – prędkość (mierzona np. w metrach na sekundę – m/s, kilometrach na godzinę – km/h)
  • t – czas (mierzony np. w sekundach – s, godzinach – h)

Aby obliczyć drogę, wystarczy zatem znać wartość prędkości i czas trwania ruchu, a następnie podstawić te wartości do wzoru. Pamiętajmy o spójności jednostek – jeśli prędkość jest podana w km/h, a czas w sekundach, konieczna jest zamiana jednostek przed podstawieniem do wzoru.

Przykłady Obliczania Drogi

Przykład 1:

Samochód porusza się z prędkością 20 m/s przez 10 sekund. Jaką drogę pokona w tym czasie?

s = v * t s = 20 m/s * 10 s s = 200 m

Samochód pokona drogę 200 metrów.

Przykład 2:

Pociąg jedzie ze stałą prędkością 80 km/h przez 2 godziny. Jaką drogę przebędzie?

s = v * t s = 80 km/h * 2 h s = 160 km

Pociąg przebędzie drogę 160 kilometrów.

Przykład 3:

Rowerzysta jedzie ze stałą prędkością 5 m/s przez 1 minutę. Jaką drogę pokona?

Najpierw zamieniamy minuty na sekundy: 1 minuta = 60 sekund

s = v * t s = 5 m/s * 60 s s = 300 m

Rowerzysta pokona drogę 300 metrów.

Przekształcenia Wzoru

Wzór s = v * t możemy przekształcić, aby obliczyć prędkość (v) lub czas (t), jeśli znamy drogę (s) i jedną z tych wartości.

Aby obliczyć prędkość (v), przekształcamy wzór:

v = s / t

Aby obliczyć czas (t), przekształcamy wzór:

t = s / v

Przykłady Wykorzystania Przekształconych Wzorów

Przykład 4:

Samochód przejechał 300 km w czasie 3 godzin. Z jaką średnią prędkością się poruszał?

v = s / t v = 300 km / 3 h v = 100 km/h

Samochód poruszał się ze średnią prędkością 100 km/h.

Przykład 5:

Pieszy przeszedł 1000 metrów z prędkością 1 m/s. Ile czasu mu to zajęło?

t = s / v t = 1000 m / 1 m/s t = 1000 s

Pieszemu zajęło to 1000 sekund, co odpowiada 16 minutom i 40 sekundom (1000 s / 60 s/min = 16,67 min).

Przykład 6:

Motocyklista jechał z prędkością 120 km/h. Jaką drogę pokona w ciągu 15 minut?

Najpierw zamieniamy minuty na godziny: 15 minut = 15/60 godziny = 0,25 godziny

s = v * t s = 120 km/h * 0,25 h s = 30 km

Motocyklista pokona drogę 30 kilometrów.

Złożone Zadania

Czasami spotykamy się z zadaniami, w których musimy połączyć kilka etapów obliczeń. Ważne jest wtedy dokładne przeanalizowanie treści zadania i rozbicie go na mniejsze, łatwiejsze do rozwiązania części.

Przykład 7:

Samochód jechał przez 30 minut z prędkością 60 km/h, a następnie przez 15 minut z prędkością 80 km/h. Jaką całkowitą drogę pokonał samochód?

Etap 1: Obliczenie drogi w pierwszym odcinku czasu.

Zamieniamy minuty na godziny: 30 minut = 0,5 godziny

s1 = v1 * t1 s1 = 60 km/h * 0,5 h s1 = 30 km

Etap 2: Obliczenie drogi w drugim odcinku czasu.

Zamieniamy minuty na godziny: 15 minut = 0,25 godziny

s2 = v2 * t2 s2 = 80 km/h * 0,25 h s2 = 20 km

Etap 3: Obliczenie całkowitej drogi.

s_calkowita = s1 + s2 s_calkowita = 30 km + 20 km s_calkowita = 50 km

Samochód pokonał łącznie 50 kilometrów.

Przykład 8:

Pociąg jechał przez 2 godziny ze stałą prędkością, a następnie zwiększył prędkość o 20 km/h i jechał z tą prędkością przez kolejne 3 godziny. Całkowita droga, którą pokonał pociąg wynosiła 460 km. Z jaką prędkością pociąg jechał na początku?

Oznaczmy prędkość początkową jako v. Wtedy prędkość po zwiększeniu wynosi v + 20 km/h.

Droga w pierwszym odcinku czasu: s1 = v * 2 h Droga w drugim odcinku czasu: s2 = (v + 20 km/h) * 3 h

Całkowita droga: s1 + s2 = 460 km

Podstawiamy: 2v + 3(v + 20) = 460 2v + 3v + 60 = 460 5v = 400 v = 80 km/h

Pociąg na początku jechał z prędkością 80 km/h.

Praktyczne Zastosowania

Obliczanie drogi w ruchu jednostajnym prostoliniowym ma wiele praktycznych zastosowań. Możemy oszacować czas podróży, obliczyć odległość przebytą przez pojazd, czy też analizować ruch ciał w różnych sytuacjach. Znajomość tych obliczeń jest przydatna w życiu codziennym, w fizyce, inżynierii oraz wielu innych dziedzinach.

Pamiętaj, że kluczem do sukcesu jest zrozumienie wzoru i umiejętność jego przekształcania oraz dostosowywania do konkretnych zadań. Im więcej przykładów rozwiążesz, tym łatwiej będzie Ci radzić sobie z bardziej skomplikowanymi problemami. Zwróć uwagę na jednostki i zawsze sprawdzaj, czy są one spójne. Jeśli prędkość jest podana w kilometrach na godzinę, a czas w sekundach, musisz zamienić jedną z tych wartości, aby uzyskać poprawny wynik. Ćwiczenie czyni mistrza!

Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym PPT - Zadanie projektowe PowerPoint Presentation, free download - ID
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym PPT - Nazwa szkoły: ZSO NR 5 GIMNAZJUM NR 17 ID grupy: 98/5_MF_G2
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym Dane INFORMACYJNE : ID grupy: 96/34_MP_G2 Opiekun: Pani Elżbieta Prass
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym Prędkość w ruchu jednostajnym prostoliniowym - YouTube
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym PPT - Zadanie projektowe PowerPoint Presentation - ID:4039110
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym KLASA 7 FIZYKA - wirtualna lekcja 4
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym W Ruchu Jednostajnie Prostoliniowym Prdko - question
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym PPT - Zadanie projektowe PowerPoint Presentation - ID:4039110
Jak Obliczyć Drogę W Ruchu Jednostajnym Prostoliniowym PPT - DANE INFORMACYJNE PowerPoint Presentation, free download - ID:4134428

Podobne artykuły, które mogą Cię zainteresować